Reaksi Kimia Proses Pengosongan dan Pengisian Baterai

Baterai,, komponen yang satu ini pastilah sudah akrab bagi kita. Bahkan kehidupan sehari-hari kita tidak pernah terlepas dari peran benda ajaib ini. Mulai dari baterai alkali, li-ion, nickel cadmium, accu, dll.

Ditinjau dari sifatnya, baterai dapat dikategorikan menjadi dua jenis, yaitu baterai primer dan baterai sekunder. Baterai primer adalah baterai yang tidak bisa dimuati lagi jika muatan listriknya sudah habis kita gunakan (unrechargedable battery) sedangkan baterai sekunder adalah baterai yang dapat diisi ulang/ dimuati lagi (rechargadable battery). Proses elektrokimia baterai sekunder bersifat reversibel (dapat berbalikan) dengan efisiensinya yang tinggi. Reversible artinya di dalam baterai dapat berlangsung proses pengubahan kimia menjadi tenaga listrik, dan sebaliknya dari tenaga listrik menjadi tenaga kimia, yaitu pengisian kembali dengan cara regenerasi dari elektroda-elektroda yang dipakai dengan melewatkan arus listrik dalam arah (polaritas) yang berlawanan di dalam sel baterai. Jadi dapat dikatakan bahwa reaksi kimia yang terjadi pada proses charging dan discharging saling berkebalikan.
Baterai juga merupakan salah satu komponen utama dalam kendaraan bermotor, baik alat berat, mobil atau motor, semua memerlukan baterai untuk dapat menghidupkan engine (mencatu arus pada dinamo starter kendaraan). Baterai mampu mengubah tenaga kimia menjadi tenaga listrik. Baterai untuk Alat Berat dan mobil biasanya mempunyai tegangan sebesar 12 Volt, sedangkan untuk motor ada tiga jenis yaitu, dengan tegangan 12 Volt, 9 volt dan ada juga yang bertegangan 6 Volt. Kesemuanya tentu saja merupakan baterai rechargedable. Di kendaraan bermotor, sistem pengisian baterai menggunakan alternator dan regulator tegangan yang akan mengisi baterai selama engine hidup.
Bila ditinjau dari elemennya, baterai dibagi menjadi baterai basah dan baterai kering.
Baterai basah
media penyimpan arus listrikjni merupakan jenis paling umum digunakan. baterai jenis ini masih perlu diberi air baterai yang dikenal dengan sebutan accu zuur. Selain baterai jenis ini, ada beberapa jenis baterai basah lainnya :
– Low Maintenance
Jenis ini bentuknya mirip dengan baterai basah biasa dan tetap punya lubang pengisian di atasnya. Bedanya, baterai ini sudah diisi air sejak dari pabrik. Untuk pengisian air baterai (bukan dengan accu zuur) bisa dilakukan dalam 6 bulan hingga 1 tahun.
 – Maintenance Free
Baterai jenis ini tidak mempunyai lubang pengisian air, meski berisi cairan. Mirip jenis low maintenance, baterai ini juga sudah diisi air dari pabrik. Bahan perak yang dipakai buat elektroda membuat airnya tidak menguap. Kalaupun menguap akan dikembalikan lagi ke dalam. Keuntungannya adalah baterai jenis ini tidak butuh perawatan
Baterai Kering
Baterai jenis ini tidak memakai cairan, mirip seperti baterai telpon selular. Baterai ini tahan terhadap getaran dan suhu rcndah. Dimensinya yang kecil bisa menimbulkan keuntungan dan kerugian. Keuntungannya, tak banyak makan tempat. Sedangkan kerugiannya, tidak pas di dudukan baterai aslinya. baterai jenis ini samasekali tidak butuh perawatan, tetapi rentan-terhadap pengisian berlebih dan pemakaian arus yang sampai habis, karena bisa merusak sel-sel penyimpanan arusnya.
Kutub positif baterai menggunakan lempeng timbal peroksida dan kutub negatifnya menggunakan lempeng timbal sedangkan larutan elektrolitnya adalah larutan asam sulfat. Ketika baterai dipakai, terjadi reaksi kimia yang mengakibatkan endapan pada elektroda negatif (reduksi) dan elektroda positif (oksidasi). Akibatnya, dalam waktu tertentu antara kedua elektroda tidak ada beda potensial, artinya baterai menjadi kosong. Supaya baterai dapat dipakai lagi, harus diisi dengan cara mengalirkan arus listrik kearah yang berlawanan dengan arus listrik yang dikeluarkan baterai itu. Ketika baterai diisi akan terjadi pengumpulan muatan listrik. Pengumpulan jumlah muatan listrik dinyatakan dalam ampere jam disebut tenaga baterai. Pada kenyataannya, pemakaian baterai tidak dapat mengeluarkan seluruh energi yang tersimpan dalam baterai itu. Oleh karenanya, baterai mempunyai rendemen atau efisiensi.
Pada kesempatan yang lalu saya telah membahas mengenai cara atau prosedur melakukan pengisian baterai, maka pada kesempatan kali ini akan dibahas mengenai proses reaksi kimia pada proses pengosongan dan pengisian baterai itu sendiri yang bila diilustrasikan dalam animasi yang saya buat sebagai berikut:
Proses Pengosongan / discharge battery
Bila baterai dihubungkan dengan beban maka, elektron mengalir ke elektroda positif (PbO2) melalui beban dari elektroda negatif (Pb), kemudian ion-ion negatif mengalir ke  elektroda positif dan ion-ion positif mengalir ke elektroda negatif. Arus listrik dapat mengalir disebabkan adanya elektron yang bergerak ke dan/atau dari elektroda sel melalui reaksi ion antara molekul elektroda dengan molekul elektrolit sehingga memberikan jalan bagi elektron untuk mengalir.
Reaksi kimia yang terjadi dapat dijelaskan sebagai berikut:
Setiap molekul cairan elektrolit Asam sulfat (H2SO4) dalam sel tersebut pecah menjadi dua yaitu ion hydrogen yang bermuatan positif (2H+) dan ion sulfat yang bermuatan negatif (SO42-)
gbr4

Bila baterai dibebani, maka tiap ion negatif sulfat (SO42-)akan bereaksi dengan plat timah murni (Pb) menjadi timah sulfat (PbSO4) sambil melepaskan dua elektron. Sedangkan sepasang ion hidrogen (2H+ ) akan bereaksi dengan plat timah peroksida (PbO2) menjadi timah sulfat (PbSO4) sambil mengambil dua elektron dan bersenyawa dengan satu atom oksigen untuk membentuk air (H2O). Pengambilan dan pemberian elektron dalam proses kimia ini akan menyebabkan timbulnya beda potensial listrik antara kutub-kutub sel baterai.

Reaksi ini akan berlangsung terus sampai isi (tenaga baterai) habis alias dalam keadaan discharge.
gbr5
PbO2 = Timah peroxida (katub positif / anoda)
Pb = Timah murni (kutub negatif/katoda)
2H2SO4= Asam sulfat (elektrolit)
PbSO4 = Timah sulfat (kutub positif dan negatif setelah proses pengosongan)
H2O= Air yang terjadi setelah pengosongan
Pada saat baterai dalam keadaan discharge maka hampir semua asam melekat pada pelat-pelat dalam sel sehingga cairan eletrolit konsentrasinya sangat rendah dan hampir melulu hanya terdiri dari air (H2O), akibatnya berat jenis cairan menurun menjadi sekitar 1,1 kg/dm3 dan ini mendekati berat jenis air yang 1 kg/dm3. Sedangkan baterai yang masih berkapasitas penuh berat jenisnya sekitar 1,285 kg/dm3. Nah, dengan perbedaan berat jenis inilah kapasitas isi baterai bisa diketahui apakah masih penuh atau sudah berkurang yaitu dengan menggunakan alat hidrometer. Hidrometer ini merupakan salah satu alat yang wajib ada di bengkel baterai (bengkel yang menyediakan jasa setrum/cas baterai). Selain itu pada saat baterai dalam keadaan discharge maka 85% cairan elektrolit terdiri dari air (H2O) dimana air ini bisa membeku, cover baterai pecah dan pelat-pelat menjadi rusak.
Proses Pengisian
Proses ini adalah kebalikan dari proses pengosongan dimana arus listrik dialirkan yang arahnya berlawanan dengan arus yang terjadi pada saat pengosongan. Pada proses ini setiap molekul air terurai. Ion oksigen yang bebas bersatu dengan tiap atom Pb pada plat positif membentuk timah peroxida (PbO2). Sedangkan tiap pasang ion hidrogen (2H+) yang dekat plat negatif bersatu dengan ion negatif Sulfat (SO4–) pada plat negatif untuk membentuk asam sulfat. Akibatnya berat jenis cairan elektrolit bertambah menjadi sekitar 1,285 (pada baterai yang terisi penuh).Proses reaksi kima yang terjadi adalah sebagai berikut :
 gbr6

Bongkar regulator tegangan tipe semikonduktor pada alternator Nikko

Berawal dari tugas mengajar di salah satu sekolah mekanik alat berat di kota palembang beberapa waktu yang lalu, saya berkesempatan untuk mengajak para siswa untuk lebih mendalami srtuktur dan cara kerja regulator tegangan pada alternator yang digunakan pada alat berat Komatsu.Alternator merupakan komponen yang berfungsi sebagai pembangkit tegangan dengan merubah energi kinetik menjadi energi listrik. Seperti halnya pada kendaraan pada umumnya, pada alat berat alternator digunakan sebagai pembangkit tenaga listrik untuk mengisi kembali baterai / akumulator. Tenaga putar dari engine akan dirubah oleh alternator menjadi energi listrik sesuai dengan kaidah tangan kanan dari flemming.  Listrik yang dibangkitkan berupa listrik AC (alternating current) dengan polaritas yang selau berubah ubah sehingga perlu disearahkan (di DC kan). Komponen yang digunakan adalah dioda rectifier, sementara itu penggunaan cincin belah / komutator sebagai penyearah sudah sejak lama ditinggalkan. Bisa jadi masih bisa ditemui hanya ada pada unit-unit lama yang sudah tidak diproduksi lagi dan populasinya juga sudah mulai habis. Listrik yang sudah searah tadi yang selanjutnya digunakan untuk mengisi kembali baterai. Dalam hal ini alternator berfungsi sebagai charging system. Selain itu, alternator juga berfungsi sebagai sumber tegangan untuk menyuplay kelistrikan alat berat selama unit dioperasikan. Lampu kerja, lampu signal, controller, radio dan peralatan elektronik lain yang ada pada alat berat akan disuplay dari baterai selama engine tidak dihidupkan.

Mengingat sedemikian vitalnya fungsi alternator, tegangan yang dihasilkan harus dijaga kestabilannya pada nilai tertentu sesuai dengan kebutuhan sistem. Tegangan yang terlalu rendah akan mengakibatkan tidak berfungsinya charging sistem sebagaimana mestinya. Tegangan yang terlalu tinggi selain mengakibatkan overcharging, juga dapat menyebabkan kerusakan serius pada sistem kelistrikan. dengan demikian, keberadaan regulator tegangan sangan diperlukan pada alternator.

Beragam desain regulator tegangan berkembang. Bila pada waktu yang lampau masih digunakan regulator tipe tirrill (menggunakan magnetic contactor yang sekarang sudah tidak digunakan/ diproduksi lagi) maka seiring kemajuan teknologi semikonduktor muncullah regulator type semikonduktor dan regulator dengan ic (integrated circuit) semikonduktor.

Kesempatan kali ini kita akan mempelajari rangkaian regulator tegangan pada alternator yang diproduksi Nikko Electric Industries 24 vdc yang banyak digunakan pada unit Komatsu.

Regulator ini mempunyai 2 kaki masing masing terminal R dan F serta terminal E pada body (chasisnya). Fisik dari luar dapat dilihat pada gambar berikut.

 

kemasan didesain agar tahan air, panas maupun getaran dengan dicor menggunakan karet rubber. Konsekuensinya, jika terjadi kerusakan pada komponen elektronik di dalamnya kita kesulitan membongkarnya. Membeli regulator baru akan lebih efektif dari segi kemudahan dan waktu pengerjaan.

 

Setelah rangkaian elektroniknya berhasil dibuka dan diberaihkan dari sisa sisa karet rubber yang masih menempel, kita dapat mengidentifikasi tiap komponen yang digunakan.

 

Regulator ini merupakan regulator type semikonduktor dengan transistor sebagai komponen utamanya. Dua buah tranistor tipe NPN berfungsi sebagai saklar elektronik dengan memberikan arus bias ke kaki basis sehingga kaki colector dan emitor terhubung. Kedua transistor dirangkai sedemikian rupa sehingga ketika terjadi kenaikan tegangan dari alternator, transistor kedua akan aktif untuk mentanahkan arus basis transistor pertama untuk memutuskan arus penguat medan magnet pada field coil/ rotor coil (field coil alternator terhubung dengan terminal R dan F). Turunnya kemagnetan yang dibangkitkan field coil serta merta akan mengakibatkan turunnya tegangan alternator sehingga transistor kedua akan off dan transistor pertama akan on untuk kembali mengalirkan arus penguat medan magnet pada field coil alternator, begitu seterusnya.

Agar dapat berfunsi sebagaimana mestinya, transistor dilenglapi dengan komponen seperti resistor, capasitor, dioda dan dioda zener.
Sebuah dioda freewheel (D2) yang akan terhubung paralel dengan field coil (antara terminal R dan F) berfungsi sebagai penyalur arus induksi diri dari field coil ketika arus penguat medan magnet diputus.
Resistor pembagi tegangan ( R3, R4, R5, dan R6) berfungsi sebagai penurun tegangan alternator sebelum diumpankan ke dioda zener (ZD/ D1) yang terhubung reverse dengan kaki basis transystor kedua.
Resistor pull up (R1) berfungsi menghubungkan kaki basis transistor pertama (Q1) dengan terminal R agar secara default mendapat logic satu sehingga transistor pertama (Q1) akan on, sampai ketika Q2 on menghubungkannya langsung dengan ground maka akan berubah menjadi logic nol sehingga transistor 2 akan off.
Sebaliknya, Resistor pull down (R2) berfungsi menghubungkan kaki basis Q2 dengan ground agar secara default mendapat logic nol sehingga transistor 2 akan off, sampai ada trigger dari D1 maka akan berubah menjadi logic satu sehingga transistor 2 akan on.Tanpa harus ribet dengan alat ukur, pembangkit pulsa, CRO, dll, rangkaian regulator di atas dapat kita simulasikan menggunakan program livewire, proteus, electronics workbench atau yang lainnya untuk melihat lebih detil cara kerja dan parameter-parameter yang ada di tiap komponen. Saya sendiri mennggunakan livewire karena terlihat lebih menarik dan mudah dipahami siswa karena disajikan pula aliran arusnya. (mengenai penggunaan lifewire akan saya share pada kesempatan yang lain ^^)Demikian kiranya, sedikit tulisan saya mengenai regulator tipe semikonduktor. Semoga bermanfaat. Maju terus Indonesia. ^^ 

Kabel USB OTG untuk smartphone android

Kabel USB OTG adalah perangkat yang memungkinkan ponsel  smartphone android kita dapat terhubung dengan perangkat lain seperti usb flash disk, usb mouse, usb keyBoard dan lain lain. USB OTG ini juga dapat berfungsi dengan baik pada tablet android. Namun tidak semua perangkat android mempunyai fitur tersebut, untuk memakai fitur tersebut beberapa harus menggunakan aplikasi pihak ketiga (baca juga: aplikasi untuk kompatibilitas USB OTG).Hal tersebut di atas dikarenakan tidak semua kernel android support USB OTG, namun jika anda menggunakan kernel yang support OTG, maka anda dapat memanfaatkan USB OTG tersebut. Jadi kesimpulannya, USB OTG tidak bergantung pada type atau merk android anda, namun bergantung dari kernel android anda apakah support atau tidak.

Kabel ini banyak dijual di pasaran dengan harga yang cukup murah.namun jika di rumah anda terdapat kabel kabel usb bekas ada baiknya kita membuatnya sendiri seperti yang saya buat pada kesempatan kali ini.

Bahan yang kita perlukan hanya sebuah kabel usb female bekas yang bisa didapat dari kabel perpanjangan usb dan sebuah konektor usb mini untuk perangkat android kita.

 

 

Dibandingkan kabel usb reguler, ada wiring yang sedikit berbeda dari kabel usb otg yaitu pin sensing pada  usb mini kita hubungkan dengan ground seperti yang terlihat pada skema berikut.

Kabel usb otg berfungsi dengan baik untuk menjalankan mouse pada samsung galaxy s2 lte dan sony experia.

Mengukur pemakaian daya listrik realtime di rumah

Mau tau berapa pemakaian daya listrik realtime di rumah kita?
cara yang tepat bukan memperkirakan pemakaian dengan menghitung daya yang tertulis pada peralatan listrik di rumah tapi dengan menggunakan watt meter. Sec umum drumah kita tdk ada tuh watt meter, jadi satu2nya cara mudahnya adl dengan menghitungnya melalui kWh meter yang lazim terpasang dirumah kita.
tahu kan yg namanya kWh meter? biasanya disebut meteran listrik yang kayak gini

bagian2 nya:

1. kWh (kilo Watt jam) terukur
2. piringan/cakram kWh meter
3. segel PLN
4. name plate
5. cover MCB
6. MCB

alat lain yang perlu disiapin:

  • stopwach (pake hp jg boleh)
  • kalkulator (di hp juga biasanya dah ada menu kalkulator)

prinsipnya, makin banyak daya aktif (watt) yang terpakai, putaran piringan / cakram kwh meter makin cepat. Kecepatan putaran piringan kWh meter inilah yang kita hitung berapa waktunya dengan stopwatch. gunakan tanda warna hitam di piringan sbagai patokan.
misal kita dapetin untuk 3x putaran waktunya 43,52 detik.

Selanjutnya kita lihat di name plate KWH meter, disana akan ditemukan banyak spesifikasi dari meteran listrik tersebut. Lihat berapa konstanta KWH meter yang satuannya PUTARAN/KWH atau PUT/KWH. Konstanta yang umum ada yang 900 put/KWH, 1250 put/KWH, 720 put/KWH dan 600 put/KWH. Misalnya konstanta 900 Put/KWH artinya untuk menghasilkan angka 1 KWH di stand meter piringan KWH harus berputar sebanyak 900 kali.
nah kal gitu besarnya WATT yang kita pakai berati =
WATT = (3600 x Jumlah Putaran) / (Konstanta x Waktu n Putaran) x 1000
WATT = (3600 x 3)/(900 x 43,52) x 1000
WATT = 0,275 x 1000
WATT = 275 Watt

So,,, pada saat pengukuran tadi kita sedang menggunakan daya listrik sebanyak 275 Watt.

semoga bermanfaat.

MY RADIO

Awalnya siy mo bersih2 base camp,,,
eh,,, nemu barang2 rongsokan peninggalan perang dunia ke dua,, ya uda de,, hasratku untuk mengoprek2 menggebu2.

Da radio buatan taiwan ma kotak speker yang diselimuti tebelnya debu2,, (ah mungkin debu vulkanik waktu meledaknya gunung merapi pas jaman majapahit itu,,)
oke deh,, biar ku gak ngelantur malah ngomongin hayam wuruk dan patih gajah mada,, ku bongkar ja deh tu radio, ku ambil rangkaian elektronikanya ajah, casingnya ku kasie makan si “mudrik” (ehh,, dianya malah gak doyan),,

Yup,, udah,, gini ni jadinya tu radio oprekanku yang kalo kamu mau cari dipasaran yakin deh gak ada yang jual radio persis kayak gini bentuknya,,

tinggal di cat ajah tu biar lebih norak.